Edward I. Solomon
Professor Edward Solomon’s research spans the fields of physical-inorganic, bioinorganic, and theoretical-inorganic chemistry. His work focuses on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has developed new spectroscopic and electronic structure methods and applied these to active sites in catalysis. He has made significant contributions to our understanding of metal sites involved in electron and oxo transfer, copper sites involved in O2 binding, activation and reduction to water, in structure/function correlations over non-heme iron enzymes, and in the correlation of biological to heterogeneous catalysis.
Edward I. Solomon grew up in North Miami Beach, Florida, received his Ph.D. at Princeton (1972) and was a postdoctoral fellow at The Ørsted Institute in Denmark and at Caltech. He started his career at MIT in late 1975, became a full professor in 1981, and joined the faculty at Stanford in 1982 where he is now the Monroe E. Spaght Professor of Humanities and Sciences and Professor of Photon Science at SLAC National Accelerator Laboratory. He has been a visiting professor in France, Argentina, Japan, China, India, Australia and Brazil. He has received ACS National Awards in Inorganic Chemistry, Distinguished Service in the Advancement of Inorganic Chemistry, the Alfred Bader Award in Bioinorganic or Bioorganic Chemistry, the Ira Remsen Award, and the Kosolapoff Award, the Centenary Medal from the Royal Society of Chemistry (UK), the Wheland Medal from the University of Chicago, the Bailar Medal from the University of Illinois, the Frontiers in Biological Chemistry Award from the Max-Planck- Institute (Mülheim), the Chakravorty Award from the Chemical Research Society of India and the Dean’s Award for Distinguished Teaching at Stanford among others. He is a member of the National Academy of Sciences, the American Academy of Arts and Sciences and a Fellow in American Association for the Advancement of Science and in the American Chemical Society.
The Solomon lab uses both experimental and theoretical techniques to define the electronic and geometric structures of biologically- and catalytically-relevant transition metal sites, with the goal of applying insights into electronic structure to obtain a detailed understanding of reactivity and function. This research utilizes a wide range of spectroscopic, theoretical, and chemical techniques to probe structure/function relationships, gain mechanistic insight, and address fundamental questions of relevance to chemistry and biology. The systems under study can be divided into five general areas:
– Electron Transfer Sites
– Copper Active Sites in Biology
– Mononuclear Non-Heme Iron Enzymes: Structure/Function Correlation
– Binuclear Non-Heme Iron Enzymes: Dioxygen Binding and Activation
– Correlations from Biological to Heterogenous Catalysis
Areas of Interest and Research
Professor Solomon’s research spans the fields of physical-inorganic and bioinorganic chemistry, emphasizing the application of a wide variety of spectroscopic and computational methods to determine the electronic structure of transition metal complexes. Research is directed toward both high symmetry small molecule complexes to define in detail electronic structure contributions to chemical and physical properties, and metal ion active sites in catalysis to understand their unusual spectral features in terms of electronic and geometric structure and to evaluate these structural contributions to reactivity. Many studies focus on fundamental problems in bioinorganic chemistry. Areas of present interest include: 1) Electronic structure contributions to electron transfer in copper, iron-sulfur and heme sites; 2) O2 binding, activation, and reduction by Cu cluster active sites; 3) Structure/function correlations over non-heme iron enzymes; 4) Development of new spectroscopic and electronic structure methods in bioinorganic chemistry; and 5) Correlation of biological to heterogeneous catalysis.